Type: \(\displaystyle 2A^{1}_1\) (Dynkin type computed to be: \(\displaystyle 2A^{1}_1\))
Simple basis: 2 vectors: (2, 2, 1), (0, 2, 1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_1
simple basis centralizer: 1 vectors: (0, 0, 1)
Number of k-submodules of g: 10
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{2}}+V_{\omega_{1}+\omega_{2}}+V_{2\omega_{1}}+2V_{\omega_{2}}+2V_{\omega_{1}}+3V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, -1)(0, 0, -1)g_{-3}-2\varepsilon_{3}
Module 22(0, -1, -1)(0, 1, 0)g_{2}
g_{-5}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 31(0, 0, 1)(0, 0, 1)g_{3}2\varepsilon_{3}
Module 42(-1, -1, -1)(1, 1, 0)g_{4}
g_{-6}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 52(0, -1, 0)(0, 1, 1)g_{5}
g_{-2}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
Module 62(-1, -1, 0)(1, 1, 1)g_{6}
g_{-4}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
Module 73(0, -2, -1)(0, 2, 1)g_{7}
h_{3}+2h_{2}
g_{-7}
2\varepsilon_{2}
0
-2\varepsilon_{2}
Module 84(-1, -2, -1)(1, 2, 1)g_{8}
g_{-1}
g_{1}
g_{-8}
\varepsilon_{1}+\varepsilon_{2}
-\varepsilon_{1}+\varepsilon_{2}
\varepsilon_{1}-\varepsilon_{2}
-\varepsilon_{1}-\varepsilon_{2}
Module 93(-2, -2, -1)(2, 2, 1)g_{9}
h_{3}+2h_{2}+2h_{1}
g_{-9}
2\varepsilon_{1}
0
-2\varepsilon_{1}
Module 101(0, 0, 0)(0, 0, 0)h_{3}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 7
Heirs rejected due to not being maximally dominant: 1
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 1
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{1}_1
Potential Dynkin type extensions: 3A^{1}_1,